1. Setup the Github loader by configuring the Github account with username and personal access token (PAT). Check out this link to learn how to create a PAT.
from embedchain.loaders.github import GithubLoader

loader = GithubLoader(
    config={
        "token":"ghp_xxxx"
        }
    )
  1. Once you setup the loader, you can create an app and load data using the above Github loader
import os
from embedchain.pipeline import Pipeline as App

os.environ["OPENAI_API_KEY"] = "sk-xxxx"

app = App()

app.add("repo:embedchain/embedchain type:repo", data_type="github", loader=loader)

response = app.query("What is Embedchain?")
# Answer: Embedchain is a Data Platform for Large Language Models (LLMs). It allows users to seamlessly load, index, retrieve, and sync unstructured data in order to build dynamic, LLM-powered applications. There is also a JavaScript implementation called embedchain-js available on GitHub.

The add function of the app will accept any valid github query with qualifiers. It only supports loading github code, repository, issues and pull-requests.

You must provide qualifiers type: and repo: in the query. The type: qualifier can be a combination of code, repo, pr, issue. The repo: qualifier must be a valid github repository name.

Valid queries

  • repo:embedchain/embedchain type:repo - to load the repository
  • repo:embedchain/embedchain type:issue,pr - to load the issues and pull-requests of the repository
  • repo:embedchain/embedchain type:issue state:closed - to load the closed issues of the repository
  1. We automatically create a chunker to chunk your GitHub data, however if you wish to provide your own chunker class. Here is how you can do that:
from embedchain.chunkers.common_chunker import CommonChunker
from embedchain.config.add_config import ChunkerConfig

github_chunker_config = ChunkerConfig(chunk_size=2000, chunk_overlap=0, length_function=len)
github_chunker = CommonChunker(config=github_chunker_config)

app.add(load_query, data_type="github", loader=loader, chunker=github_chunker)